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EXECUTIVE SUMMARY 

Risk assessment methods are used to guide decision making during all phases of a carbon storage 

project, from initial site design and permitting all the way through shut-in and long-term 

maintenance. Unfortunately, significant science gaps exist in understanding the behavior of 

carbon dioxide (CO2) storage reservoirs, leading to very large uncertainty bounds. 

This work examines one key driver of risk: the potential for CO2 and brine leakage out of a 

storage interval along a permeable fault zone considering multiphase and non-isothermal effects. 

Two key factors complicate this assessment and must be addressed: fault zones are known to 

exhibit very complicated multi-physics behavior, and direct characterization of the constitutive 

properties of a fault zone is typically unavailable. 

A deterministic computational model is presented here for the behavior of a leaking fault 

connecting a CO2 saline storage reservoir and a groundwater aquifer. Using a fluid flow 

simulator, Nonisothermal Unsaturated-Saturated Flow and Transport model (NUFT), 1,000 

models were run varying five dimensions: fault permeability, aquifer permeability, scaling factor 

of caprock permeability, scaling factor of pressure, and scaling factor of distance. This 

deterministic model was then used within an uncertainty quantification (UQ) sampling 

framework in order to rigorously quantify the sensitivity of the output response to the input 

model parameters—that is, brine/CO2 leakage rates as a function of the input constitutive 

properties and boundary conditions. 

Response surfaces were constructed with PSUADE for 19 time steps from 0.5 to 1,000 years as 

functions of a refined parameter set. On each response surface, 100,000 models were run to 

generate CO2 and brine leakage rate profiles for different percentiles. The response surfaces 

constitute a reduced-order model (ROM) that can be incorporated into a system model that 

predicts the potential for CO2 or brine to be released from a storage reservoir to an overlying 

aquifer or the atmosphere (e.g., Pawar et al., 2013). 

The current analysis corresponds to a first-generation of leakage risk profiles with the objective 

to provide leakage rates to the National Risk Assessment Partnership’s (NRAP) Groundwater 

Protection Working Group. It has several assumptions and limitations mainly due to its two-

dimensional (2-D) geometry and the simplistic representation of the fault zone geometry and 

properties. Furthermore, this model currently does not account for the effect of the in situ stress. 

All these limitations will be addressed in further stages of this work. 
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1. CONCEPTUAL MODEL 

The fault leakage scenario described in this document corresponds to carbon dioxide (CO2) and 

brine leakage through a fault that spans from a CO2 storage reservoir in Field A to an overlying 

aquifer. The reservoir model of Field A is based on a real, large CO2 injection site, currently in 

operation that has been history-matched with real wellbore and injection data. 

Field A’s reservoir (Figure 1) is a siliciclastic ~ 20-m thick unit at ~ 1,800-m depth. It is overlaid 

by a thick mudstone caprock, which in this model is ~ 1,500-m thick. Reservoir pressure, 

temperature, and saturation values are based on Field A’s reservoir model. However, aquifer 

characteristics, depth and thickness, as well as the fault, are hypothetical. 

  

Figure 1: Diagram of simulated case, approximately based on Field A’s geology. 

 

In the first-generation model, the following simplifications and assumptions were made. First the 

model is two-dimensional (2-D), which does not capture flow, pressure, and mass transport along 

the strike of the fault. Similarly, a 2-D model does not capture the interaction of a three-

dimensional (3-D) CO2 plume intersecting the fault plane. Furthermore, the fault is represented 

in a very simplistic way, as a single plane continuous all the way to the aquifer, with a single and 

constant value of permeability, as well as constant fault continuity and thickness. This model 

does not account for the fault structure, differential permeability perpendicular vs. parallel to the 

fault, heterogeneities along the fault, diagenesis or stress dependent permeability, nor the 

response of the fault to the in situ stress. These factors will be incorporated in future generations 

of risk profiles. 
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2. PARAMETER RANGE 

In the literature examined, fault permeability has been estimated using a variety of approaches 

that incorporate deformation mechanism, host rock lithology, presence of clays, diagenesis, 

stress, etc. In this particular case, given the hypothetical nature of the fault, published 

relationships of fault permeability and host rock permeability for siliciclastic sediments were 

used (Antonellini and Aydin, 1994; Hippler, 1997; Fisher and Knipe, 1998) (Table 1). Similarly 

for caprock permeability and aquifer permeability, published values of common caprocks were 

used (Birkholzer et al., 2009; Preisig and Prevost, 2011).  

 

Table 1: Parameters used during base case simulations and range of uncertainty of those properties used 

during the uncertainty quantification (UQ) analysis 

Parameter Base Case Uncertainty Range 

Fault permeability [m2] 10-13 10-19 to 10-13 

Caprock permeability [m2] 10-19 10-21 to 10-16 

Aquifer permeability [m2] 10-14 10-15 to 10-13 

Fault porosity [%] 10 -- 

Aquifer porosity [%] 25 -- 

Fault thickness [m] 0.5 -- 

Specific heat capacity of caprock 
[J/kg/°C] 

1,000 -- 

Saturated thermal conductivity 
[W/m/°C] 

2.5 -- 
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3. FLOW SIMULATION 

The flow simulations presented in this document were performed with NUFT (Nonisothermal 

Unsaturated-Saturated Flow and Transport model). NUFT is a flexible multi-purpose computer 

code for modeling fluid flow and transport in porous media under both non-isothermal and 

isothermal conditions. It solves the continuum equations for the conservation of mass and 

energy. 

When supercritical CO2 migrates upward through the permeable fault, a phase change happens 

because of the decrease in temperature and pressure. The larger change of CO2 density during 

this phase transition will make the temperature decrease, the so-called Joule-Thomson effect. 

The thermal effects make the process multi-dimensional even under idealized conditions where 

upflow would be confined to a vertical one-dimensional (1-D) channel with impermeable 

boundaries (Pruess, 2003). Here a 2-D model is established to model the fluid flow and heat 

transfer during the CO2 leakage (see Figure 2). The leaking fault connects the storage reservoir to 

a groundwater aquifer. In the base case scenario, it is assumed that the caprock is relatively 

impermeable with isotropic permeability equal to 10-19 m2 (Preisig and Prevost, 2011). The 

permeability of the vertical fault in the base case scenario is assumed to the largest value of the 

estimated range described in the previous section, 10-13 m2. The permeability of aquifer is one 

magnitude smaller than that of fault (Pruess, 2003). The fault may exchange heat with the 

surrounding rock. The specific heat capacity of the caprock is set up to 1,000 J/kg/°C with a 

saturated thermal conductivity equal to 2.5 W/m/°C (Preisig and Prevost, 2011). The porosity of 

the fault is 0.1, and is 0.25 in the aquifer. Boundary conditions at the upper aquifer layer are a 

hydrostatic pressure 2.254·106 bars and a temperature at 21.9°C, which is calculated based on the 

assumption that the land surface temperature is 15°C with a geothermal gradient of 30°C/km. 

The temperature at the inlet of the fault is 95°C, which is same as Field A’s reservoir. Variable 

conditions are used for the pressure and liquid saturation at the inlet of fault (see Figures 2 and 

3). These values are the outputs of pressure and brine saturation at the top layer and injection 

well location of Field A’s reservoir, which includes data during the CO2 injection and also 

captures the pressure decrease when the injection stops. 

 

Table 2: Boundary conditions of flow simulations 

Location Pressure [bars] Temperature [°C] Saturation 

Upper aquifer layer  2.254·106 (hydrostatic) 21.9 1 

Inlet of fault variable 95.0 variable 

 

Prior to introducing CO2 into the fault, an initial state is prepared to generate the pressure and 

temperature distribution in all domains. Then the model is run using the pressure and brine 

saturation history at the inlet boundary (see Figures 2 and 3). The model includes transitions 

between super- and sub-critical conditions, considers the non-linear CO2 enthalpy functions 

given by Span and Wagner (1996) and the viscosity function given by Fenghour and Wakeham 

(1998). For numerical simulation the system is discretized into 99 layers with thickness varying 

from 1 m to 200 m. In the horizontal direction, 11 grid blocks are used, starting with 0.5 m for 

the fault. The simulation time is 1,000 years. 
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Figure 2: 2-D flow system. 

 

 

Figure 3: Brine saturation history at the inlet of fault. 
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Figure 4: Pressure history at the inlet of fault. 
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4. RESULTS OF FLOW SIMULATION 

During the period of CO2 injection, the pressure in the reservoir is high. The pressure decreases 

when the injection stops at 5 years and to background hydrostatic pressure 20 years later. The 

high pressure in the reservoir causes the pressure in the fault to increase, such that the transition 

point of CO2 from supercritical to gas is lower: 473 m at 1 year (see Figure 5). With the 

continuing decrease of pressure after 5 years, the depth of phase transition extends to more than 

700 m, and is 773 m at 1,000 years (see Figure 5). The phase transition causes the decompression 

of gas-like subcritical CO2, which comes with the heat sorption, the so-called Joule-Thomson 

effect. This non-isothermal effect can be seen clearly from Figures 5 and 6. The temperature – 

pressure (T-P) profile along the fault at 5 years approximately follows the CO2 saturation line 

beyond the critical point. Temperature increases near the bottom of the overlying two-phase 

aqueous-gas zone, but resumes an enhanced decline due to Joule-Thomson cooling as the gas 

expands during upward flow (Pruess, 2011). The lower temperature gas accumulates in the 

aquifer; the temperature at the aquifer near the fault outlet boundary keeps decreasing before 100 

years. But the lower temperature zone disappears 1,000 years later. When the overpressure in 

reservoir disappears, CO2 leakage is only driven by buoyancy and the leakage rate decreases, the 

heat exchange between the fault and caprock makes the non-isothermal effect unclear. 

At early time, outflow at the outlet of fault is only brine. A large water outflow occurs as free 

CO2 approaches the outlet of fault (see Figure 7). The largest CO2 flux approaches 4.1·10-3 

kg/s/m2 when the injection stops at 5 years. The CO2 flux rate decreases after 5 years and 

increases again later because of the continual accumulation of CO2 in the reservoir (see Figure 

3). The CO2 flux rate reaches the second peak value at 150 years because the CO2 saturation at 

the inlet remains large during this period. The CO2 flux value continues to decrease 150 years 

later because the CO2 saturation at the inlet keeps decreasing and there is no overpressure drive 

anymore. The decreasing CO2 flux will cause the gas saturation in the outlet to decrease (see 

Figures 8 and 9). On the other hand, the brine saturation at the later part increases. Some water 

flows downward because of the decrease of CO2 flux. 

When the pressure is high, the density of CO2 is also high (see Figure 10). At 1 year, the density 

change along the fault respects the phase change around 470 m clearly. Later on, the change of 

pressure is not so much (after 10 years); the density curve along the fault does not change 

drastically. The viscosity is a function of temperature and density, so the difference of CO2 

viscosity along the fault between 1 year and 10 years is bigger (see Figure 11). The general curve 

pattern is similar to that of CO2 density.   
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Figure 5: Temperature-pressure profiles along the fault at different times. 

 

Figure 6: Temperature distribution at different times. 
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Figure 7: Flux rate of brine and gas CO2 at the outlet of fault. 

 

Figure 8: Saturation evolution at the outlet of fault. 
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Figure 9: Gas saturation along the fault at different times. 

 

Figure 10: CO2 density along the fault at different times. 
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Figure 11: CO2 viscosity along the fault at different times. 
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5. SENSITIVITY ANALYSIS OF RESULTS AND UQ ANALYSIS - COUPLED 

SIMULATION AND EMULATION FOR QUANTIFYING FAULT LEAKAGE 

If NUFT models are defined as simulation of physical processes, a reduced-order model (ROM) 

(also called a response function (surface), an emulation model, or a surrogate model) is a 

statistical approximation of numerically simulated realizations. The emulated statistical 

approximation provides higher-dimensional information of possible simulations in parameter 

space. The following coupled simulation-emulation process was conducted: 

1. Data collection for defining ranges of uncertain parameters 

2. Sampling in parameter space 

3. Model generation and execution 

4. Sensitivity analysis and parameter screening 

5. Re-define parameter space resulting in new sample points 

6. Construction of ROMs using PSUADE 

7. Emulation on ROMs to provide leakage statistics 

PSUADE was developed by Lawrence Livermore National Laboratory (LLNL) as a code for UQ 

tasks such as forward uncertainty propagation, qualitative and quantitative sensitivity analysis, 

parameter exploration, risk analysis, and numerical optimization. It employs the non-intrusive or 

sampling-based approach to UQ that does not require simulation codes to be modified and 

ensures that it can easily be integrated with a variety of application simulators. PSUADE is 

equipped with many response-surface generation and validation techniques. These techniques 

can be coupled with other UQ techniques such as numerical optimization and Markov Chain 

Monte Carlo methods for calibration and parameter estimation. 

In Steps 2 and 4 the Latin hypercube (McKay et al., 1979) method was used to produce 1,000 

sample points, which yielded 865 and 878 successful runs out of 1,000, respectively. Results 

from Step 4 were used in a Sobol sensitivity analysis to identify the relevant parameters (Figures 

12 and 13). Based on this analysis fault permeability was identified as the dominant parameters, 

allowing the number of variable parameters to be reduced in the refined sampling set (Step 5). 

Table 3 displays the redefined parameter space. In Step 7, LP-tau (Shukhman, 1994) was used to 

produce 100,000 sample points using the ROM to produce the necessary statistical output for 

UQ. The adopted boundary pressure was dependent on distance (using a distance scaling factor) 

and a pressure-magnitude scaling factor, to reflect the uncertainty on the reservoir pressure, in 

the equation below: 

 

Pressure [Pa] = P0*x4*(-2.2133e-5*s+0.9958) 

 

This pressure is based on the time-dependent pressure profiles at the fault inlet, where coefficient 

x4 is the scaling factor of boundary pressure in the ROM. A simple saturation curve was used 

without considering the distance effect, because time-dependent saturation had a minor effect on 

fault leakage rate. Time-dependent saturation may need to be revisited for the second-generation 

of risk profiles. Finally, a scaling factor for caprock permeability was used to limit caprock 

permeability to be less than the permeability of the fault.  
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Figure 14 and 15 represents CO2 and brine leakage rates as a function of time derived from the 

ROM at specific confidence levels. Analytical expressions that capture the range of leakage rates 

for CO2 and brine will be incorporated into groundwater simulations to assess the impact of 

leakage to groundwater chemistry.  

 

Table 3: Data collection, sampling, and refined sampling using most sensitive parameters determined from 

the Sobol sensitivity analysis 

Parameter 

Sampling Range 

Parameter 

Refined Sampling using 
Most Sensitive Parameters 

Min Max Min Max 

Fault width (m)  0.1 2.0 Distance scale 0.0 1.0 

Fault permeability 
log [m2]  

-14 -12 
Fault permeability 
log [m2]  

10-19 10-13 

Aquifer 
permeability log 
[m2] 

-15 -13 
Aquifer permeability 
log [m2] 

10-15 10-13 

Cap perm log [m2] -19 -17 Cap perm log [m2] 0.0 1.0 

Pressure [Pa] 1.87 2.357 Pressure [Pa] 0.0 1.0 

 

 

Figure 12: Sobol index. 
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Figure 13: Scatter plots of screened parameters. 

 

 

Figure 14: CO2 leakage rates derived from the ROM at specific confidence levels. 
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Figure 15: Brine leakage rates derived from the ROM at specific confidence levels. 
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6. APPLICABILITY AND LIMITATIONS 

This ROM was developed to predict the flux of CO2 and brine from a deep reservoir to a shallow 

groundwater aquifer. It should be emphasized that the ROM predictions are site specific, and 

critically depend on the assumed geometry and reservoir boundary conditions. The proposed 

ROM generation methodology, however, is quite general. To examine a new site, the geometry 

and reservoir boundary conditions can be modified, and the high-fidelity simulations re-run. A 

new site-specific ROM can then be constructed from these results. 
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7. SUMMARY 

The fault leakage scenario described in the present document corresponds to CO2 and brine 

leakage through a fault, with multiphase and non-isothermal effects, that spans from a CO2 

storage reservoir in Field A to an overlying aquifer. Using NUFT 1,000 models were run varying 

five dimensions: fault permeability, aquifer permeability, scaling factor of caprock permeability, 

scaling factor of pressure, and scaling factor of distance. A second set of NUFT simulations was 

run with refined parameter based on the sensitivity analysis of the first set. Response surfaces 

were then constructed with PSUADE for 19 time steps from 0.5 to 1,000 years as functions of 

the refined parameter set. On each response surface, 100,000 models were run to generated CO2 

and brine leakage rate profiles for different percentiles.   

The current analysis corresponds to the first-generation of leakage risk profiles with the objective 

to provide leakage rates to the Groundwater Protection Working Group. It has several 

assumptions and limitations mainly due to its 2-D geometry and the simplistic representation of 

the fault zone geometry and properties. Furthermore, this model currently does not account for 

the effect of the in situ stress. All these limitations will be address in further stages of this work. 
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